Photovoltaic Power Harvesting Technologies in Biomedical Implantable Devices Considering the Optimal Location

Jinwei Zhao, Student Member, IEEE, Rami Ghannam, Senior Member, IEEE, Man Kay Law, Senior Member, IEEE, Muhammad Ali Imran, Senior Member, IEEE and Hadi Heidari, Senior Member, IEEE

Take-Home Messages

- This is first time to model the performance of implantable PV cells in different layers of tissue. We demonstrate how the electrical characteristics are influenced by the implanting location of the device.
- A PV cell implanted in the dermis layer can harvest the greatest amount of power.
- We propose implanting our energy harvesting PV cells in the hypodermis layer.
- Our proposed PV device harvests enough energy to supply power for low-cost implants such as cardiac pacemakers, retinal implants or biomedical sensors.
- PV cells implanted in the adipose layer can harvest nearly 11.84 mW using an 850 nm light source.
Photovoltaic Power Harvesting Technologies in Biomedical Implantable Devices Considering the Optimal Location

Jinwei Zhao, Student Member, IEEE, Rami Ghannam, Senior Member, IEEE, Man Kay Law, Senior Member, IEEE, Muhammad Ali Imran, Senior Member, IEEE and Hadi Heidari, Senior Member, IEEE

Abstract

There are still many challenges in effectively harvesting and generating power for implantable medical devices. Most of today’s research focuses on finding ways to harvest energy from the human body to avoid the use of batteries, which require surgical replacement. For example, current energy harvesters rely on piezoelectricity, thermoelectricity and solar electricity to drive the implantable device. However, the majority of these energy harvesting techniques suffer from a variety of limitations such as low power output, large size or poor efficiency. Due to their high efficiency, we focus our attention on solar photovoltaic cells. We demonstrate the tissue absorption losses severely influence their performance. We predict the performance of these cells using simulation through the verified experimental data. Our results show that our model can obtain 17.2% efficiency and 0.675 V open-circuit voltage in one sun condition. In addition, our device can also harvest up to 15 mW/cm² in dermis and 11.84 mW/cm² in hypodermis by using 100 mW/cm² light source at 800 nm and 850 nm, respectively. We propose implanting our device in hypodermis to obtain a stable power output.

Keywords — Implantable Device, Power harvesting, Photovoltaic, Optimal location

I. INTRODUCTION

Biomedical implantable and wearable devices play a significant role in modern therapy and diagnosis [1]. Due to their clinical demand, a variety of subcutaneous devices such as defibrillators, pacemakers, cochlear implants, drug pumps, neurological stimulators and biomedical sensors are now being developed [2-7]. Power harvesting or generation is still a big challenge in these devices. Due to the hazardous nature of batteries as well as their size, lifespan and the need for surgical replacement, alternative energy generation techniques are now in high demand [8]. Emerging power harvesters include Photovoltaic cells (PV), Piezoelectric Generators (PEG), Thermoelectric Cells (TEG), Biofuel Cells (BC), and Triboelectric nanogenerators (TENG). They can harvest energy from human fluids, the human body or the external environment [9-14]. Another alternative method relies on Wireless Power Transfer (WPT), which enables power transfer between an external power source and an implantable device [15, 16]. The literature has demonstrated the feasibility of implanting these devices in small mammals [8, 17-19], lobsters [20], insects [21, 22] and snails [23], with some research based on in-vitro testing [24-26]. Compared with other power harvesting techniques, WPT enables the device to be implanted in the human body [27] and is approved by the Food and Drug Administration (FDA) [8, 15]. PEG, TEG and TENG are designed to harvest energy produced by body fluids or temperature gradients. All of these require specific locations with high motion or temperature changes. BC is highly biocompatible with living organisms and has been tested with plants, insects and mammals [20-23, 28, 29]. Despite its low output voltage and enzymatic degradation, the abundance of glucose in living organisms makes it a feasible power harvesting technology for implantable devices. In WPT, the near-field inductive coupling method is mostly applied in implantable applications [15]. Large coil size, short power range and tissue loss are still unaddressed challenges [15, 30]. Ultrasonic power harvesting is one way to overcome these drawbacks, but the amount of power is lower than 1 mW [31].

Compared with other technologies, PV cells can produce energy in the tens to hundreds of microwatts range within a relatively small area (mm² scale) [26, 32-35]. Previous studies have shown that commercial PV cells are capable of powering an implantable pacemaker [26]. In L. Lu et al. 2018 [26], monocrystalline cell arrays were designed and tested under a 4 mm skin layer (2 mm pork skin + 2 mm chicken muscle). Ultrathin and flexible photovoltaic cells were made using biocompatible encapsulation [26]. Moreover, Hung et al. [35] demonstrated that the
important before any fabrication and implantation takes place. Consequently, we will present our optimized 2D PV cell structure using a simulation platform that relies on solving Maxwell’s semiconductor equations. In addition, light propagation through the stratum corneum, epidermis, dermis and adipose will be modelled using the Jones matrix technique. Our energy harvesting PV device will be inserted in each of these different layers, as shown in Fig. 1. We will therefore demonstrate the performance of the PV cell when it is placed in different skin locations and skin layers.

A. Semiconductor principles

Most PV cells are fabricated using semiconductor materials such as Si, GaAs and CdTe. According to the literature, organic materials are generating much interest due to their flexibility, low price and low fabrication costs. However, they still suffer from poor stability and a large active area is required due to their low conversion efficiency [40]. Most implantable PV cells are made of crystalline silicon due to their high efficiency and non-toxicity [40]. Consequently, we will therefore focus our study on semiconductor PV cells.

Carrier transport in the semiconductor layers can be simulated by invoking the Poisson and continuity equations (equations 1a and 1c). Moreover, we invoke Snell’s law and Maxwell’s equations to analyze light penetration using the Jones matrix method [41]. All these equations can be solved using the Finite Element Method (FEM) [42]. Thus,

\[
-\nabla \cdot \nabla \psi = \frac{q}{\varepsilon} (p - n + N_D^+ - N_A^-) \quad (1a)
\]

\[
\frac{\partial n}{\partial t} = -\mu_n n \nabla^2 \psi + D_n \nabla^2 n + G - R \quad (1b)
\]

\[
\frac{\partial p}{\partial t} = \mu_p p \nabla^2 \psi + D_p \nabla^2 p + G - R \quad (1c)
\]

where \(n \) and \(p \) are the electron and hole concentrations, \(\psi \) is the electrostatic potential, \(q \) is the electron charge, \(\varepsilon \) is the permittivity of semiconductor, \(N_D^+ \) and \(N_A^- \) are the ionized donor and acceptor impurity concentrations, \(k \) is the Boltzmann constant, \(T \) is the ambient temperature, \(\mu_p \) and \(\mu_n \) are the electron and hole mobilities, \(D_{np} \) are the electron and hole diffusion coefficient (\(D_{np} = \mu_n k T / q \)), and \(G \) and \(R \) present the generation rate and recombination rate of electron-hole pairs. The recombination rates \(R \) are composed of direct radiative (\(R_{rad} \)), Auger (\(R_{Au} \)) and Shockley-Read-Hall (\(R_{SRH} \)) recombination [42]:

\[
R_{SRH} = \frac{p n - n_i^2}{\tau_p (n + n_i) + \tau_n (p + p_i)} \quad (2a)
\]

\[
R_{Au} = (g_{ech} C_n n + g_{ehh} C_p p) (p n - n_i^2) \quad (2b)
\]

\[
R_{rad} = g_{eh} B (p n - n_i^2) \quad (2c)
\]

where \(p_i, n_i \) are the trap state hole/electron concentrations, \(g_{ech} \) and \(g_{ehh} \) are the injection factors, \(B \) is the radiative coefficient, \(C_n \) and \(C_p \) are the Auger coefficients, \(\tau_p \) and \(\tau_n \) are
the recombination lifetimes. The generation rate can be determined by [41]:

\[G(\lambda) = \alpha(\lambda)b(\lambda)P_s(x, y, \lambda) \quad (3) \]

where \(\alpha(\lambda) \) is the absorption coefficient of semiconductor, \(b(\lambda) \) is the photon flux on the surface, \(P_s \) is the power flow according to various wavelengths and the depth into the device in x- and y- direction. The photon flux can be calculated from the light intensity of Air Mass 1.5 Global (AM1.5G).

B. Initial and boundary conditions

To begin, we apply the neutral charge condition to setup the doping profile and ohmic contact characteristics for estimating the initial electrostatic potential [41]. In our model, we enable periodic boundary conditions to analyze carrier diffusion and electrical potentials in the transverse directions. The Neumann boundary conditions are applied to separate the simulation domains. The fluxes across the boundaries were set to zero (\(\vec{n} E = 0 \), \(\vec{n} J_{n,p} = 0 \), \(\vec{n} \nabla n = 0 \)), where \(\vec{n} \) is the outward-oriented vector.

C. Performance Characteristics

The electron current \((J_e) \), hole current \((J_h) \) and short-circuit current \((J_{sc}) \) can be determined using [41, 42]:

\[J_e = -q\mu_e n \nabla \psi + qD_n \nabla n \quad (4a) \]
\[J_p = -q\mu_p \nabla \psi - qD_p \nabla p \quad (4b) \]
\[J_{sc} = \int \int \int [J_e(x, y, \lambda) + J_p(x, y, \lambda)] \, dx \, dy \, d\lambda \quad (4c) \]

Considering the parasitic resistances, the output current density of the PV cell can be obtained using [41]:

\[J(V) = -J_{sc} e^{-V/V_T} + J_{sc} - \frac{V + J(V)R_s}{R_{sh}} \quad (5) \]

where \(R_s \) and \(R_{sh} \) are the series and shunt parasitic resistances, and \(V_T \) is the thermal voltage \((V_T = kq/T)\). Since our simulation model is in 2D, \(R_s \) can be neglected and \(R_{sh} \) can be calculated using the IV characteristic of the device. The External Quantum Efficiency (EQE) can be determined using [41, 42]:

\[EQE = \frac{h \nu J_{sc}}{q \lambda P_{in}} \quad (6) \]

where \(h \) is the Plank constant, \(c \) is the speed of light, \(P_{in} \) is the input power flux density (AM 1.5G light intensity).

A. Skin Model Description

The amount of electrical energy generated from the photovoltaic effect in subcutaneous conditions is highly related to the thickness and optical properties of skins [43]. In this section, we will demonstrate how we can construct a model to simulate light propagation through the skin [26, 37, 43, 44]. Skin is composed of a number of layers that include the Stratum corneum, epidermis, dermis and hypoderms (adipose layer). According to K. Song et al. 2017 [43], the thickness of each of these skin layers is inhomogeneous [43] and the thickness of the epidermis and dermis are between 32 \(\mu \)m and 1.8 mm, respectively. In fact, the thickness of each layer varies with different skin profiles. For example, the stratum corneum is \(\sim 10 \mu \)m, the epidermis is between 100 to 150 \(\mu \)m, the dermis is between 1 to 4 mm,

TABLE I	PARAMETERS USED IN MODEL VERIFICATION AND DEVICE MODELLING				
Global Parameter	Value	Verified model	Value	Our model	Value
\(\lambda \)	4.05 eV [47][51]	\(\tau_s \)	0.34 \(\mu \)m [32]	\(\tau_{sc} \)	0.25 \(\mu \)m
\(E_g \)	1.124 eV [47]	\(t_p \)	35 \(\mu \)m [32]	\(t_p \)	49.65 \(\mu \)m
\(N_e \)	2.8x10^16 cm^-3 [51]	\(n \)	100 nm [32]	\(n \)	0.1 \(\mu \)m
\(N_h \)	1.2x10^16 cm^-3 [51]	\(N_e \)	2.5x10^16 cm^-3	\(N_e \)	1x10^15 cm^-3
\(D_n \)	36 cm^2/s [47]	\(p \)	2x10^17 cm^-3	\(p \)	4.6x10^14 cm^-3
\(D_p \)	12 cm^2/s [47]	\(n_i \)	1.0x10^16 cm^-3 [51]	\(n_i \)	1x10^15 cm^-3 [48]
\(\mu_e \)	1350 m^2/Vs [51]	Area	1.23 mm^2	Area	1 cm^2
\(\mu_p \)	450 m^2/Vs [51]	\(\lambda \)	850 nm	\(\lambda \)	550 \(\mu \)m
\(Q \)	1.6022x10^19 C [47]	\(I_0 \)	1.06 \(\mu \)W/mm^2	\(I_0 \)	1000 W/m^2
\(\epsilon \)	11.7 [47]	\(\Gamma \)	300 K	\(\Gamma \)	1000 K
\(N \)(Silicon)	[51]	\(\tau_{sc} \)(N layer)	30 \(\mu \)s [52][53]	\(\tau_{sc} \)(P. layer)	100 \(\mu \)s [52][53]
\(K \)(Silicon)	[51]	\(\tau_{sc} \)(P layer)	20 \(\mu \)s [52][53]	\(\tau_{sc} \)(N- layer)	80 \(\mu \)s [52][53]
\(C_e \)	2.8x10^15 cm^2 s^-1 [54]	\(N \)(Stratum corneum)	1.55 [44]	\(N \)(Stratum corneum)	1.55 [44]
\(C_p \)	9.9x10^15 cm^2 s^-1 [54]	\(N \)(Epidermis)	1.36 [44]	\(N \)(Epidermis)	1.36 [44]
\(B_{red} \)	1.1x10^14 cm^-2 s^-1 [46]	\(N \)(dermis)	1.41 [44]	\(N \)(dermis)	1.41 [44]
\(m_e^* m_p \)	2.99x10^6 m/s [47]	\(N \)(adipose)	1.44 [44]	\(N \)(adipose)	1.44 [44]
\(m_e^* m_p \)	1.08 [51]	\(K \)(Stratum corneum)	[44]	\(K \)(stratum corneum)	[44]
\(\Delta \)	0.57 [51]	\(K \)(Epidermis)	[44]	\(K \)(epidermis)	[44]
\(\theta \)	0.0426 eV [47]	\(K \)(dermis)	[44]	\(K \)(dermis)	[44]
\(\theta \)	0	\(K \)(adipose)	[44]	\(K \)(adipose)	[44]

This table indicates the parameters used in our device model for verification.
Fig. 2. The verified results with our model and [32]. (a) The JV curves of our model and [32] according to different forward bias condition. (b) The EQE value comparison between [32] and our model according to different spectra. The value shows great match between our simulation and experimental results in [32]. There are slightly difference in visible range and NIR range because the absorption profile of material [32][47] can be different from that in reality according to Eq. 3. (c) The efficiency change correlated to doping concentration in different solar cell layers. The results are achieved under one sun condition (100 mW/cm²), and thickness of P+ layer, N+ layer and P- layer are 1 µm, 0.25 µm and 50 µm. The optimal doping concentrations of the P+ layer, P- layer and N+ layer is 1×10¹⁵ cm⁻³, 4.6×10¹⁴ cm⁻³ and 1×10¹⁴ cm⁻³, respectively. (d) The efficiency changes with different layer thickness. The optimal thickness for the P+ layer, N+ layer and total device thickness are 0.1 µm, 0.25 µm and 56 µm under one sun condition with doping profile in Table I. and the hypodermis is between 1 mm to 6 mm [44]. Consequently, we apply a multi-layer skin structure by using a 10 µm stratum corneum, 100 µm epidermis, 1 mm dermis and 3 mm hypodermis, which is shown in Fig. 1. The propagation of light through the skin can be modelled using a 2×2 characteristic matrix [45]:

\[
\begin{bmatrix}
E_{Ra} \\
B_{Ra}
\end{bmatrix} = \left\{ \sum_{i=1}^{m} \begin{bmatrix}
\cos \varphi_i \\
j \eta_i \sin \varphi_i \\
\cos \varphi_i
\end{bmatrix} \right\} \begin{bmatrix}
1 \\
\eta_m
\end{bmatrix}
\]

(7)

where \(\delta_i \) is the phase shift (\(\delta_i = 2\pi n_i \cos \theta_i / \lambda \)) in the \(i \)th layer, \(n_i \) is the refractive index, \(d_i \) is the thickness of the \(i \)th layer, \(\eta_i \) is the pseudo index in \(i \)th layer (\(\eta_i = n_i \cos \theta_i \)), \(E_{Ra} \) or \(B_{Ra} \) is the ratio between the (electric/magnetic) field of the transmitted light and the (electric/magnetic) field of the incident light. The reflectance (\(R \)), transmittance (\(T \)) and absorbance (\(A \)) of light can be determined using [45]:

\[
T = \frac{4\eta_0 \Re(\eta_m)}{(\eta_0 E_{Ra} + B_{Ra})(\eta_0 E_{Ra} + B_{Ra})^*}
\]

(8a)

\[
A = \frac{4\eta_0 \Re(E_{Ra}B_{Ra}^* - \eta_m)}{(\eta_0 E_{Ra} + B_{Ra})(\eta_0 E_{Ra} + B_{Ra})^*}
\]

(8b)

\[
R + A + T = 1
\]

(8c)

II. MODEL VERIFICATION

Before device analysis and optimization, it is imperative to verify our model with experimental data. In this case, we setup a model of a single junction PV device using the parameters shown in Table I. The width and out-of-plane thickness of the cell are 1 mm and 1.22 mm respectively. We apply the analytical doping method to ensure a uniform doping concentration in each layer. The material properties are extracted from [46-54]. Comparisons between the reference cell [32] and simulations are shown in Figs. 2(a) and 2(b), demonstrating a good match between the results. The External Quantum Efficiency (EQE) of our model is high in both the visible and ultraviolet (UV) regions, due to the effective light reflections in both the front and rear planes. The JV curve shows a \(V_{oc} \) of 0.44 V and a \(J_{sc} \) of 650 nA/cm².

III. RESULTS AND DISCUSSION

In this section, we demonstrate the performance of our device in different skin layers. Initially, we optimized the device by changing the doping profile and geometry to improve the output performance using the parameters shown in Table I. The doping profile changes the band structure of the material, and the device performance is limited due to recombination losses, which reduces the open circuit voltage to less than the theoretical limit [32]. The thickness will affect the penetration of light, which will undoubtedly affect the amount of photo-generated current. In our design, we sweep the doping profile of the base layer, front layer and back layer, and then check the efficiency changes. Based on the inset of Fig. 2 (c), optimal doping concentration for the base layer, front layer and back layer are 4.6×10¹⁵ cm⁻³,
1×10^19 cm^-3 and 1×10^20 cm^-3, respectively. For the doping concentration in the front layer, we can obtain the same efficiency of 16.5% at both 1×10^16 cm^-3 and 1×10^19 cm^-3. However, we preferred the light doping solution to avoid possible defects as a result of excessive doping during fabrication. The efficiencies according to the thickness of the base layer, front layer and back layer are shown in Fig. 2 (d). Based on this, we can obtain the optimal thickness of each layer: 50 μm (Base), 0.25 μm (Front) and 0.1 μm (Back).

The baseline performance is shown in Fig. 3 under AM 1.5G condition (100 mW/cm²). Our device can achieve 17.20 mW maximum power at 0.585 V with 17.20% efficiency. The open-circuit voltage is 0.675 V, and the short-circuit current density is 31.42 mA/cm², which is shown in Fig. 3(h) as ‘No skin’. The EQE of our device is shown in Fig. 3(g), with a peak value of 75.80% at 750 nm. The generation and recombination rates with a 550 nm light source are shown in Fig. 3(b), which is obtained using equations (3) and (4) without skin. The generation rate improves with the depth increased, while there is a trade-off point between the generation and recombination rates at a depth of 0.23 μm. The electrons are separated and accelerated in the junction boundaries, which are shown as the peak value in Fig. 3(c).

For illustration purposes, we demonstrate the refractive index of different skin layers in comparison to silicon PV cells, as shown in Fig. 3(d). Obviously, skin has almost one third the refractive index of silicon. Similarly, the absorptance and transmittance of light through skin are shown in Fig. 3(e) and Fig. 3(f), respectively. Overall, since light propagations through more tissue, there will be a greater amount of attenuation. The epidermis predominantly absorbs the light in the UV and visible regions, with 60% of light absorbed at 350 nm. The dermis can absorb almost 40% of light from all spectra except in the NIR region, where an average of 20% is absorbed. The influence of the adipose layer is less when compared to the other layers, and a 3 mm adipose can only cause 7% attenuation of light at 550 nm, in comparison to 10% loss at 850 nm, respectively. The transmittance is inversely proportional to the skin
absorptance due to the small skin reflectance (less than 3%).

Fig. 3(g) shows the EQE according to different implant layers. When the device is implanted in Test Point A, an EQE of 67.50% can be achieved at the peak wavelength of 800 nm. When implanted in Test Point B, an EQE of 55.60% (Scattered) and 43.30% (Non-scattered) can be achieved at the peak wavelength of 832 nm and 850 nm, respectively. When implanted in Test Point C, the EQE is 38.50% at the peak wavelength of 850 nm. Fig. 3(h) shows the JV characteristics under 1 Sun illumination conditions (i.e. 100 mW/cm² at 550 nm) when the device is implanted in a different layer of human tissue as well as without tissue. The short circuit current density, \(J_{sc} \), decreases from 24.40 mA/cm² to 8.21 mA/cm², and the open circuit voltage, \(V_{oc} \), decreases from 0.670 V to 0.620 V. Furthermore, the maximum power, \(P_{max} \), can be determined using the JV curves in Figs. 3(h) and 3(i). The power therefore decreases from 13.36 ± 1 mW to 4.16 ± 1 mW. The skin transmittance influences the light illumination at the device surface, and the generation rate will be degraded according to the Eq. 4. The \(V_{oc} \) is related to the generation rate, which is qualitatively consistent with the decrease in \(V_{oc} \) (7.46%) [26].

Fig. 3(i) shows the JV characteristics at different test point when illuminated in the peak wavelength. Light attenuation through skin (Between A and C) causes 11 mA/cm² difference of \(J_{sc} \), 0.02 V difference in \(V_{oc} \), and 6.43 mW difference in \(P_{max} \). The device will generate the highest amount of power in point B by illuminating it at the peak wavelength, which is 11.84 mW. Considering the power output, the dermis layer (between points A and B) is the best implant location, since it enables the PV cell to generate 15 mW for an 800 nm light source and 13 mW for a 550 nm source. However, depending upon the type of light source and the implantation depth, the amount of harvested power will vary. For example, if the device is implanted in the narrow region between points A and B, it will generate up to 8.57 mW for a white light source and 3.45 mW for NIR light. This region is typically 1 mm in depth. However, if the device is implanted between points B and C, which is almost 3 mm, it will generate 0.63 mW for a white light source and 2.98 mW for NIR light. Consequently, we recommend implanting our PV cells between regions B and C since it is thicker, which makes it easier to implant in the human body and the amount of harvested power is constant within this region. To overcome the high amount of attenuation, we recommend using NIR light.

Another phenomenon that affects the performance of our PV cells is light scattering, which may be due to blood and water content in the skin layers. By implanting the device in point B, scattering causes a 47% drop in power at 550 nm and 9% at 850 nm. Similarly, implanting the device in location C results in 28% drop using NIR light and 52% using white light. Table II compares our work with previously published work [25, 32, 43, 55]. Our proposed implantation location (between B and C), illumination wavelength (NIR light) and optimised PV cell clearly harvests higher power (> 8.35 mW/cm²) than the literature. Despite of the comparison between the different PV cells, our cell can also compare with the other energy harvesters. For output voltage, PV cells are less restricted by the size of the organ or the depth of the implants compared with the other energy harvesters, which is shown in Figs. 3(h) and 3(i). In the system level, Some energy harvesters such as PEG, TENG and WPT are considered as an AC sources, while the implantable PV cell is considered as a DC source, relaxing the additional loss due to the extra AC-DC power conversion stage [8].

<table>
<thead>
<tr>
<th>Solar cells</th>
<th>Illumination</th>
<th>Skin type</th>
<th>Skin thickness</th>
<th>Output Power (^{(a)})</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-i-n Si</td>
<td>One Sun</td>
<td>Pork</td>
<td>3 mm</td>
<td>0.45 mW/cm²(^{(b)})</td>
<td>[25]</td>
</tr>
<tr>
<td>p-n GaAs</td>
<td>134 μW/cm² LED</td>
<td>Rat</td>
<td>4 mm</td>
<td>1.22 mW/cm²(^{(c)})</td>
<td>[32]</td>
</tr>
<tr>
<td>p-n Si</td>
<td>One Sun</td>
<td>Human inner arm</td>
<td>0.951 ± 0.335 mm</td>
<td>3.5 mW/cm²(^{(d)})</td>
<td>[43]</td>
</tr>
<tr>
<td>GaAs:GaInP</td>
<td>One Sun</td>
<td>Rat</td>
<td>675 μm</td>
<td>4.5 mW/cm²(^{(e)})</td>
<td>[55]</td>
</tr>
<tr>
<td>n-p-p Si</td>
<td>100 mW/cm² 850nm IR light</td>
<td>Human outer arm</td>
<td>4 mm</td>
<td>8.35 mW/cm²(^{(f)})</td>
<td>This work</td>
</tr>
</tbody>
</table>

\(^{(a)}\) Power density can vary according to different experimental conditions. The following indicates the references.
\(^{(b)}\) Measured by using 3 mm pork skin in-vitro.
\(^{(c)}\) Measured under 4 mm Rat skin in-vitro, and an LED light source.
\(^{(d)}\) Measured by using fresh skin from human (Asian 95 years old) in 26 hours after death without embalming process.
\(^{(e)}\) Measured in vivo using hairless rat.
\(^{(f)}\) Simulated by using the measured in-vivo human skin properties from literature. The implant location is just under dermis.

IV. CONCLUSION

We have demonstrated the performance of an implantable PV device using the FEM method. In our design, PV cells implanted in the adipose layer can harvest nearly 11.84 mW using an 850 nm light source. This power can drive implantable devices such as pacemakers and biomedical sensors. The epidermis layer absorbs most of the visible light, and the dermis layer absorbs most of the NIR light. We further concluded that the dermis layer is a good location for implantable PV cell to acquire a high-power output, and the adipose layer is an excellent location to obtain a stable power output. NIR light enables high skin transmittance and low scattering losses, which is beneficial for the PV cell, but may be hazardous for the human body due to possible heating effects. In future, we will investigate the effect of heat on the device performance, as well as the biocompatibility of the PV device with the human body. We will also investigate the power transfer between the power harvester and load for the in-vitro tests after completing system integration and device encapsulation.
REFERENCES

Jinwei Zhao (S’17) received a B.Eng. Degree in Electrical and Electronics Engineering, University of Edinburgh, 2016 and received an M.Sc. degree in Electric Power, Newcastle University, UK, 2017. He is currently a Ph.D. student at University of Glasgow, from January 2018. The research interest is Energy harvesting, Implantable Systems and photovoltaic cells. He participated in the FDCT (The Science and Technology Development Fund) funded project “High efficiency Energy Harvesting System for Biomedical Devices” and exchanged to the State Key Laboratory of Analog and Mixed-signal VLSI group (University of Macau) in 2019.

Rami Ghannam (SM’18) is a lecturer in Electronic and Electrical Engineering with research interests in the broad field of photonics. Following his PhD. from Cambridge University in 2007, Dr. Ghannam has spent the past ten years in the field of photovoltaics. He has held previous industrial appointments at Nortel Networks, IBM Research GmbH and Starkon S.A.E. He received his B.Eng. degree from King’s College (top First-Class Honours), as well as his DIC and M.Sc. degrees from Imperial College London. Dr. Ghannam is also a member of the Microelectronics Lab, where he is investigating the use of PV cells for energy harvesting applications in wearable and implantable electronic device. He is a member of IET

Man-Kay Law (M’11-SM’16) received the B.Sc. degree in Computer Engineering and the Ph.D degree in Electronic and Computer Engineering from Hong Kong University of Science and Technology (HKUST), in 2006 and 2011, respectively. In February 2011, he joined HKUST as a Visiting Assistant Professor. He is currently an Assistant Professor with the State Key Laboratory of Analog and Mixed-Signal VLSI, Faculty of Science and Technology, University of Macau, Macau, China.

Dr. Law’s research interests are on the development of ultra-low power CMOS sensing/readout circuits and energy harvesting techniques for wireless and biomedical applications. He has developed world-leading ultra-low power CMOS temperature/image sensing systems, as well as fully integrated high efficiency solar/ultrasound energy harvesting solutions for implantable applications. He has authored and co-authored over 80 technical publications and 6 US/Chinese patents.

Dr. Law was a co-recipient of the ASQED Best Paper Award (2013), A-SSCC Distinguished Design Award (2015), ASPDAC Best Design Award (2016) and ISSCC Silkroad Award (2016). He also received the Macao Science and Technology Invention Award (2nd Class) by Macau Government - FDCT (2014, 2018). He was a member of the Technical Program Committee of International Solid-State Circuit Conference (ISSCC), University Design Contest Co-Chair of Asia and South Pacific Design Automation Conference (ASP-DAC), Asia Symposium on Quality Electronic Design (ASQED), and the Review Committee Member of IEEE International Symposium on Circuits and Systems (ISCAS), Biomedical Circuits and Systems Conference (BioCAS), and International Symposium on Integrated Circuits (ISC). He is an IEEE senior member, and serves as a technical committee member of the IEEE CAS committee on Sensory Systems as well as Biomedical and Life Science Circuits and Systems. He is...
currently a technical program committee member of ISSCC, as well as a Distinguished Lecturer of IEEE CASS.

Muhammad Ali Imran (M’03–SM’12) Fellow IET, Senior Member IEEE, Senior Fellow HEA is a Professor of Wireless Communication Systems with research interests in self-organized networks, wireless networked control systems and the wireless sensor systems. He heads the Communications, Sensing and Imaging CSI research group at University of Glasgow. He is an Affiliate Professor at the University of Oklahoma, USA and a visiting Professor at 5G Innovation Centre, University of Surrey, UK. He has over 18 years of combined academic and industry experience with several leading roles in multi-million pounds funded projects. He has been awarded 15 patents; has authored/co-authored over 400 journal and conference publications; was editor of 2 books and author of more than 15 book chapters; has successfully supervised over 40 postgraduate students at Doctoral level. He has been a consultant to international projects and local companies in the area of self-organized networks.

Hadi Heidari (S’11–M’15–SM’17) is an Assistant Professor (Lecturer) in the James Watt School of Engineering and head of the Microelectronics Lab (meLAB: www.melabresearch.com) at the University of Glasgow, UK. He has authored over 100 articles in top-tier peer reviewed journals and international conferences, is a member of the IEEE Circuits and Systems Society Board of Governors (2018-2020), IEEE Sensors Council Member-at-Large (2020-2021), Senior Member of IEEE and Fellow of Higher Education Academy (FHEA). He is an Associate Editor for the IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology and IEEE Access, Editor of Elsevier Microelectronics Journal, and Guest Editor for the IEEE Sensors Journal, and Frontiers in Neuroscience. He is the General Chair of 27th IEEE ICECS 2020, Technical Program Chair of IEEE PRIME’19, and serves on the organising committee of several conferences including the UK Circuits and Systems Workshop (UKCAS), UK-China Emerging Technologies (UCET) Conference, IEEE SENSORS’16 and ’17, NGCAS’17, BioCAS’18, PRIME’15, ISCAS’23, and the organizer of several special sessions on the IEEE Conferences. His research has been funded by major research councils and funding organizations including the European Commission, EPSRC, Royal Society and Scottish Funding Council. He is part of the €8.4M EU H2020 FET-Proactive project on “Hybrid Enhanced Regenerative Medicine Systems (HERMES)”. He has been the recipient of a number of awards including the 2019 IEEE Sensors Council Young Professional Award, the Rewards for Excellence prize from the University of Glasgow (2018), IEEE CASS Scholarship (NGCAS’17 conference), Silk Road Award from the Solid-State Circuits Conference (ISSCC’16), Best Paper Award from the IEEE ISCAS’14 conference, Gold Leaf Award from the IEEE PRIME’14 Conference. He has grant portfolio of £1 million funded by major research councils and funding organizations including European Commission, UK’s EPSRC, Royal Society, Royal Academy of Engineering and Scottish Funding Council.